On the Deployment and Operation of Correlated Data-Intensive vNF-SCs in Inter-DC EONs

Presenter: Liang Zhang

lzhang36@gmu.edu

George Mason University, Fairfax, VA 22030 USA

Authors: Zuqing Zhu¹, Liang Zhang², Bijan Jabbari² ¹School of Information Science and Technology, University of Science and Technology of China, China, zqzhu@ieee.org ²Department of Electrical and Computer Engineering, George Mason University, USA, {Izhang36, <u>bjabbari}@gmu.edu</u>

- Background
- Problem Description
- Proposed Scheme for vNF-SCs
- Evaluation
- Conclusions

Background of Network Function Virtualization

- Network function virtualization was proposed to improve the flexibility of network service provisioning and reduce the time to market of new services.
- NFV can also reduce the cost of offering the space and energy for a variety of middleboxes, and make it easy for non-professional people to and maintain these services.

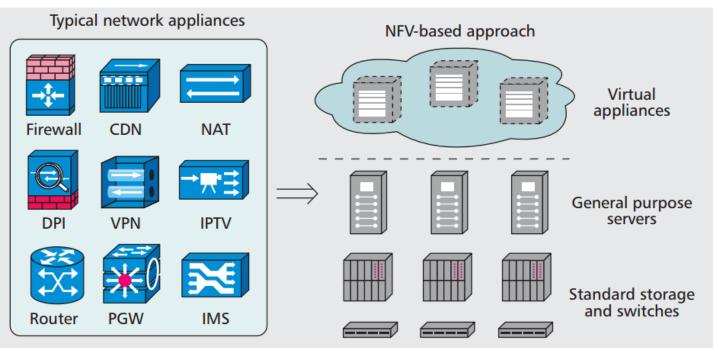


Figure A: Dedicated hardware-based appliances for network services to NFV [1]

[1] B. Han, V. Gopalakrishnan, L. Ji and S. Lee, "Network function virtualization: Challenges and opportunities for innovations," in *IEEE Communications Magazine*, vol. 53, no. 2, pp. 90-97, Feb. 2015. ©2023

NFV-related service function chains

- With NFV, we can represent a network service with a series of connected vNFs, i.e., formulating a service function chain (SFC).
- To operate a data-intensive vNF-SC, service providers need to accomplish two tasks:
- 1) scheduling the computing tasks in required vNFs

2) transferring application data between two adjacent vNFs in the vNF-SC.

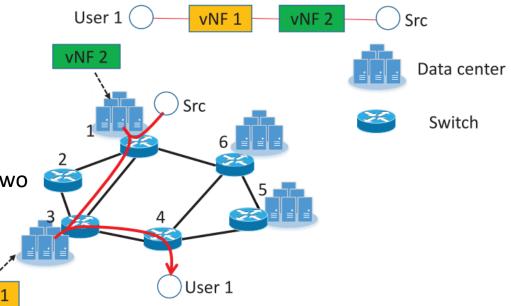
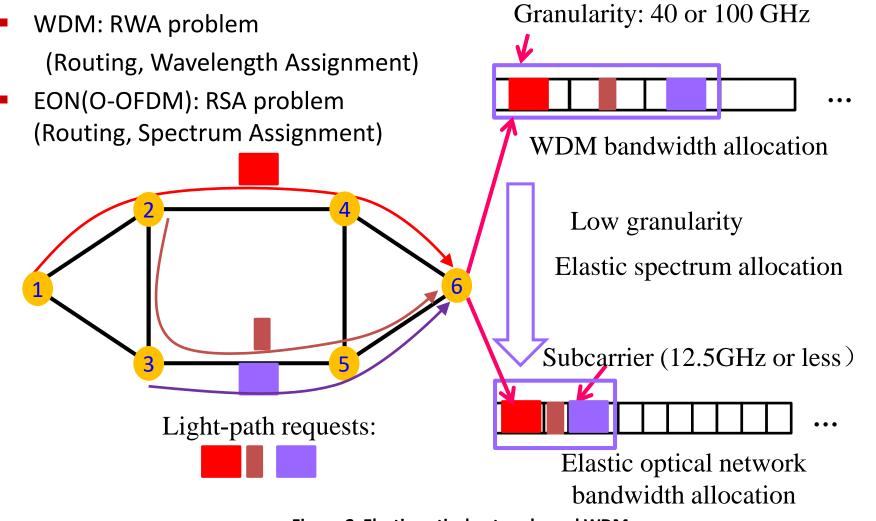



Figure B: A service example of NFV-related service function chains (SFC) [2].

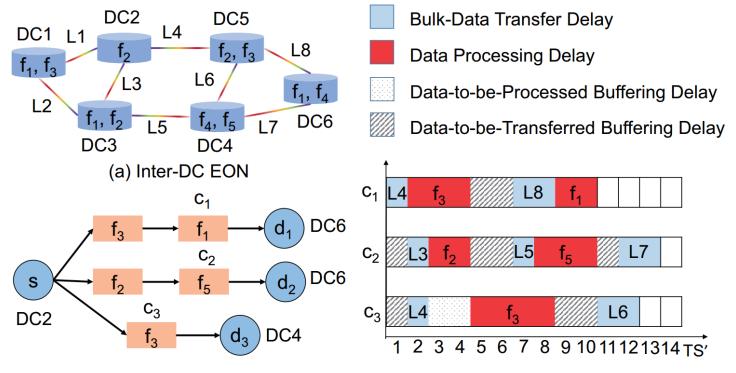
[2] J. Liu, W. Lu, F. Zhou, P. Lu and Z. Zhu, "On Dynamic Service Function Chain Deployment and Readjustment," in *IEEE Transactions* on Network and Service Management, vol. 14, no. 3, pp. 543-553, Sept. 2017. ©2023

vNF

Elastic Optical Networks (EONs) vs WDM

Contributions

- In this work, we study the problem of deploying and operating the correlated dataintensive vNF-SCs in inter-DC EONs, and our target is to minimize the average SCT of the deployed correlated data-intensive vNF-SC.
- We propose two correlation-aware algorithms to minimize the average SCT of such services. In a practical inter-DC EON, the dynamic background traffic and the vNF-SCs are co-exisiting, which would generate two-dimensional (2D) spectrum fragments on the fiber links. Since these 2D fragments can be leveraged to accomplish spectrumefficient data transfers in EONs, our algorithms schedule the bulk-data transfers with them.
- Simulation results show that the proposed algorithms can reduce the average SCT effectively.


- Background
- Problem Description
- Proposed Scheme for vNF-SCs
- Evaluation
- Conclusions

Problem Descriptions

- The inter-DC EON is denoted as G(V, L), where V is the DC set and L is the set of established lightpaths to interconnect the DCs.
- Each DC v ∈ V has certain vNF(s) deployed on it already, and there are F types of vNFs supported by the inter-DC EON in total.
- We assume that the inter-DC EON operates in a discrete-time system, i.e., the network operation status changes every time slot (TS).
- 2D spectrum fragments is generated on the lightpaths due to the dynamics of background traffic, which can be utilized for bulk data transfers between the vNFs.
- Our target is to minimize the average SCT of the deployed correlated data-intensive vNF-SC. The SCT of a service is defined as the time when all the data from the source are processed by the designated vNF-SCs and delivered to the destination.

Deploying and Operating Correlated Data-intensive vNFSCs in the Inter-DC EON

 Fig. 1(a) shows an intuitive example on the inter-DC EON, which consists of 6 DCs and has 8 lightpaths. Fig. 1(b) shows a network service that consists of three correlated dataintensive vNF-SCs. The scheme in Fig. 1(c) makes the network service in Fig. 1(b) have an SCT of 13 TS'.

(b) Correlated Data-Intensive vNF-SC Service (c) Joint Deployment and Operation Scheme

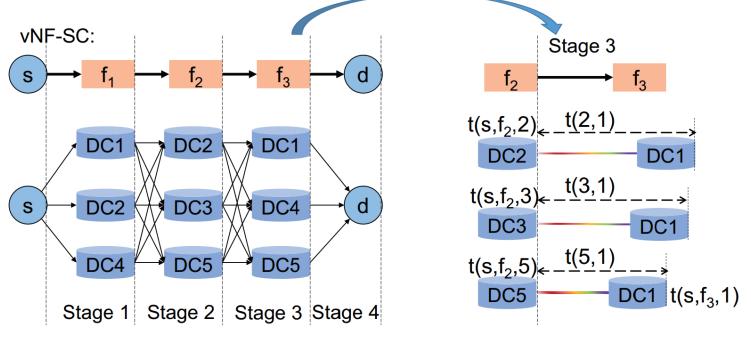
Figure 1: An example of deploying and operating correlated data-intensive vNFSCs in an inter-DC EON.

Latency Definitions

- The SCT of a vNF-SC includes four parts:
- 1) the total data processing latency in all of its vNFs,
- 2) the total data transmission latency on all of its lightpaths,
- 3) the total "data-to-be-processed" buffering delay, and
- 4) The total "data-to-be-transferred" buffering delay.

Apparently, the first part is constant and cannot be reduced, and hence we should focus on minimizing the remaining three parts.

 The studied problem is NP-hard by reducing any instance of the task scheduling problem into our problem [3].

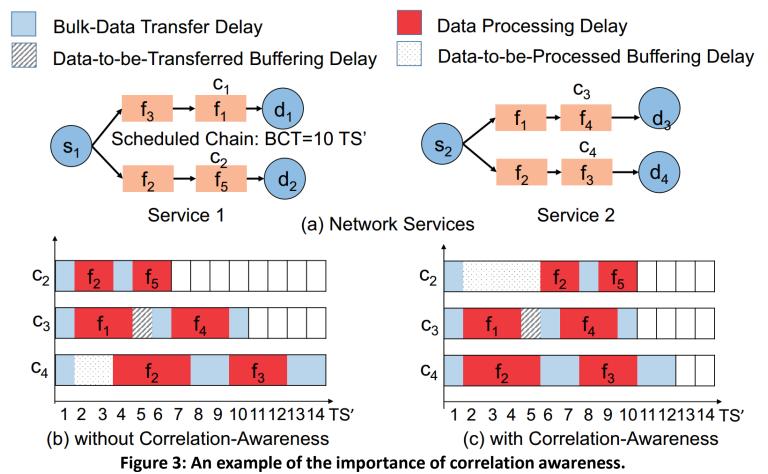

- Background
- Problem Description
- Proposed Scheme for vNF-SCs
- Evaluation
- Conclusions

DP-based Optimization for Single vNF-SC Branch

In order to deploy and operate a data-intensive vNF-SC branch, we need

1) select DCs to deploy requested vNFs,

2) schedule computing tasks with available TS' for being processed by the vNFs in selected DCs
3) Schedule bulk-data transfers with 2D fragments on lightpaths to transmit data between adjacent vNFs.


(a) Constructed Auxiliary Graph

(b) Recursive Relationship

Figure 2: An example of optimizing the deployment and operation of single dataintensive vNF-SC branch with an AG and a DP-based scheme.

Correlation awareness on the optimization

 Based on the proposed DP-based optimization scheme, we propose a correlationaware service provisioning algorithm to minimize the average SCT of correlated dataintensive vNFSC services.

©2022

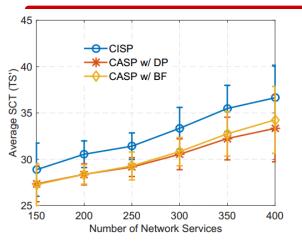
Correlation-aware service Provisioning Algorithm

Algorithm 1: Correlation-Aware Service Provisioning Al-						
gori	ithm with DP-Based Optimization (CASP w/ DP)	$O(C_p ^2 \cdot O(DP))$				
1 while $C_p \neq \emptyset$ do						
2	obtain the latest network status;					
3	for each vNF-SC branch in C_p do	calculate the BCT for all				
4	calculate its BCT with the DP-based scheme;					
5	end	pending branches				
6	if $C_p^{dd} \neq \emptyset$ then					
7	select the vNF-SC branch with minimum gap between	obtains the most urgent branch				
	its BCT and deadline in C_p^{dd} ;]				
8	if the minimum gap is smaller than t_h then					
9	deploy/schedule selected branch in C_p^{dd} with DP;					
10	update C_p , C_p^{dd} and deadline of branches in C_p^{dd} ;					
11	else					
12	select the branch with the smallest BCT among all	Continue to find the urgent branch				
	the longest branches in C_p^{∞} ;					
13	deploy/schedule selected branch in C_p^{∞} with DP;					
14	update $C_p, C_p^{dd}, C_p^{\infty}$, deadline of branches in C_p^{dd} ;					
15	end					
16	else					
17	select the branch with the smallest BCT among all the					
	longest branches in C_p^{∞} ;					
18	deploy/schedule selected branch in C_p^{∞} with DP;	the determination of the				
19	update C_p , C_p^{dd} , C_p^{∞} , deadline of branches in C_p^{dd} ;	Update network				
20	end	12				
21 end	13 13					

- Background
- Problem Description
- Proposed Scheme for vNF-SCs
- Evaluation
- Conclusions

Simulation Settings

- We evaluate the proposed algorithms with the 14-node NSFNET topology [11]. Here, each node in the topology is a DC node, and between each DC pair, there are [1,2] established lightpaths, each of which has 11 FS'.
- The background traffic occupies the lightpaths' bandwidth dynamically along the time axis and leaves 12.02% and 2.65% on average in the low and high traffic scenarios, respectively. The number of deployed vNFs on each DC is within [2,4] and there are 10 types of vNFs in total.
- In each simulation, the network services are generated dynamically according to the Poisson traffic model. Each of them asks for 3 correlated vNF-SC branches on average, the average number of vNFs in a vNF-SC is 5, and its initial data volume is uniformly distributed within [1,3] FS·TS. The vNFs' processing rates are within [0.56,1.12], and their output-to-input data volume ratios are within [0.7,1.3].
- The threshold t_h in Algorithm 1 is set to 5 TS'. For comparison, we adopt the service provisioning algorithm without correlation awareness (abbreviated as "CISP") as the benchmark.


Running Time Results

- CASP w/ DP: correlation-aware service provisioning algorithm with DP-based optimization
- CASP w/ BF: correlation-aware service provisioning algorithm with feature-based Optimization
- **CISP**: the service provisioning algorithm without correlation awareness

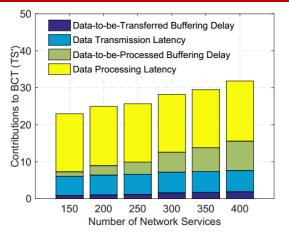
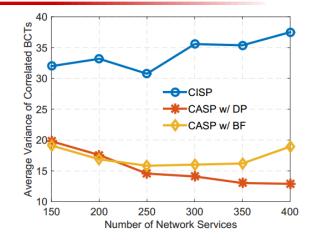
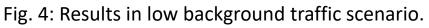
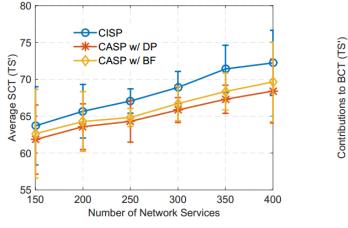
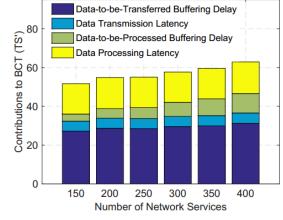

# of Network Services	Average Running Time per Network Service			
	CISP	CASP w/ DP	CASP w/ BF	
200	0.68	4.64	0.92	
300	0.89	7.64	1.23	
400	0.98	9.77	1.39	

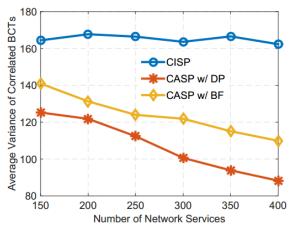
Table I. Running Time per Network Service in low Traffic (Seconds).


Evaluation Results


(a) Average SCT of network services




(b) Average BCT of vNF-SC branches



(c) Average variance of correlated BCTs

(a) Average SCT of network services

©2022

(c) Average variance of correlated BCTs

Fig. 5: Results in high background traffic scenario.

(b) Average BCT of vNF-SC branches

- Background
- Problem Description
- Proposed Scheme for vNF-SCs
- Evaluation
- Conclusions

Conclusions

- In this work, we studied how to deploy and operate correlated data-intensive virtual network function-service chain (vNF-SCs) to minimize their average service completion time (SCT).
- We proposed a dynamic programming based optimization scheme and two correlationaware service provisioning algorithms to minimize the average SCT of network services.
- Simulation results verified that the proposed algorithms can effectively reduce the average SCT of network services.