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Internet of Things Applications

Billions of Internet of Things (loT) devices are connected to the Internet, and
many loT devices have limited power, computing and storage resources [1].

Various loT applications, have been widely studied to improve our daily life.
Different applications may have various resource preference.

Medical

[1] C. Qiu et al., “Networking integrated cloud—edge—end in 10T: A blockchain-assisted collective Q-learning approach, ” IEEE Internet
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MEC for loT Applications

= MECis a network architecture that pushes cloud computing capabilities at edge nodes that are close
to users and connected to cloud servers via a core network.

= Mobile edge computing (MEC) is effective in reducing the latency for communications and
computing services to loT devices [2].
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[2] P. Wang et al., “Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems,”
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An Edge Computing Framework

((e)) _= AL: Access Link
MECN 3
BL: Backhaul Link
Mobile Edge Computing &4 Computing Backhaul /" 7y,
zr /R TR L ¢ ! Self Interf
Node (MECN) Facilities » Interference: & el Interterence

Fig. 3: A novel framework for edge computing based loTs.
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Communication and Computing Model

= Llets;j, B;; and 1;; be the signal to interference plus noise ratio (SINR), the assigned
bandwidth, and the received data rate of user i towards the edge node j, respectively.

dl-,j = max(d},j, dgj)

di; = fobijlog,(1+s;;)

2 . a b
di,j = mln(di,]’,, dj’,j

Here, dillj is the data rate of one hop communications; dgj is the data rate of two-hop

a. and d? . are the data rate of the access link and the backhaul link.

communications; dl-j, jr,j

= let tfj and tl-T,j be the computation latency and the transmission delay from TD i to edge
node j. If TD i is served by edge node j, the total delay is:

— ¢+C T
ti}j = ti,j + ti,j
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Problem Formulation

=  We formulate the APplication-aware Edge-loT (APET) problem with the
objective of minimizing the average latency of all TDs.
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Deep Reinforcement Learning

= Machine learning is a branch of artificial intelligence and computer science,
which focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy*.
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Elements of Deep Reinforcement Learning

Agent: Intelligent programs

Environment: External condition

A typical fully connected neural network includes three layers: the input layer,

the hidden layer and the output layer.

The output (action a(t)) is determined by the input (state s(t)), the reward
(r(t)) is determined by the output, and the weights are updated based on the

reward.

Agent

State .~ Reward 7

Environment

Policy

Action
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The framework of DDPG

= State:
s(n) = {H(E),HWU), 71, ¢1, 95, 47 ti ;)
= Action:
a(n) = {w;;}
= Reward:

g(t) = |_l1]|22 ti
i J

= Actor network: input is s, output is a
= Critic network: input is (s, a), output is Q(s,a)
= Target actor network and target critic network:
input is actor network and critic network
it is used to calculate the loss function of the critic network



The framework of DDPG

= The critic network is updated based on the loss function:
L(69) = Z (8(k) = Q(s(k), a(k)|69 +yA1),

(6)
= Q(s(k + 1),a(k +1)]697)).

= The actor network is updated based on the gradient policy as follows.

Voo J(6%) = Z (A2 - A3),

< ; (7)
Ay = V40(s,al6 )|s=s(k),a=<p(8(k)) ’

(A3 = Ve ¢(510%) 5o (x) -

= Then, the target networks are updated as:
0¥ «— nb?% + (1 —n)o%¥",
02~ — no? + (1 —n)e<e".

(8)
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The DDPG-APET Algorithm

Algorithm 1: DDPG-APET
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Inmput : 9B, %, u;(t), p(s(t)|6¥), Q(s(t ,a(r)|6Q),
@(s(1)|0¥7) and Q(s(1),a(1)|6%7);

Output: g(n+1);

for epoch m do

Initialize the actor network, the critic network, the target
actor network and the target critic network with the
weights 6%, 02, 9%, and 02, respectively;

Initialize the replay buffer n = 0;

Initialize s(n), a(n) and g(n);

for training step n do

Obtain H(&), H(%), r;, ci, qi, qj.f, and t; j;
Generate s(n+ 1);
Record the sample (s(n),a(n), g(n),s(n+1)) in
replay buffer;
n=n+l,;
if 7> nbamh then
Update weight of the critic network e, by
Eq. (10);
Update weight of the actor network #¥ by
Eq. (11);
Update weights of target networks by Eq. (12);
Generate action a(n +1);
Add noise to action a(n+1) =a(n+1) +a’(n+1);
Obtain g(n + 1) based on a(n + 1) and Algorithm 2;
©2022

17 return the largest g(n + 1) in all epoches;
18 Calculate w; ; based on the final action a(n + 1);
19 Obtain #; ;j based on a(n + 1) and Algorithm 2;

Update Critic network

Update Actor network

Update Target Actor network

Update Target Critic network
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Joint Resource Assign Algorithm

= An optimal resource assignment strategy is designed for the computing and
communication resource allocation based on the given TD assignment.

Algorithm 2: Joint Resource Assign Algorithm
Input : &, %, fj’."ax, Cj, wij;
Output: b; ; and 7; j;

1 for edge node j in & do

2 Obtain the TD set Q; = {w; j = 1};

3 Initialize Ab, A1, At; ; and 1; j;

s | ff=frer el =y ff =0and CF =0,

5 whlle fR > Ab and CR > At do

6 for TD [ in Q do

7 L Obtain r j if Ab and At are assigned to TD i;

8

Cdlculdte AI;,J- =ti,j— f:‘,j;

9 Find i’ = argmax At; ; ;

; .
10 Update b, j = by j + Ab ;
11 Update 77 j = 73 j + AT;
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The Diagram of the DDPG-APET Algorithm
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Simulation Settings

We use Python3.7 and Pycharm 2020.3.2 to run our simulations, and utilize
Tensorflow 2.4 (optimizer is tf.keras.optimizers.Adam).

The coverage area is set as 500 m x 500 m, and all edge nodes are placed in
fixed locations as shown in figure below.

The same parameters are utilized to initialize the actor networks and the critic

networks. " . —
Three baseline algorithms are utilized ‘:EEEN _________
to evaluate the performance of the ™

proposed algorithm. SR SR 30, 200 S S SO S
1) Best-APET L.

2) Fair-APET e e N
3)) S-Edge BT TS N . R
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Evaluation Results
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Fig.3: Convergence results versus
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different batch size.
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Evaluation Results (Cont’d)
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Evaluation Results (Cont’d)
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Conclusions

= We have proposed a novel edge-computing framework to serve loT devices
with different types of applications, and formulated the application-aware
edge-loT problem with the target to optimize the average latency of all loT
devices.

= we have proposed a deep deterministic policy gradient algorithm to solve the
application-aware edge-loT problem and designed an optimal joint resource

assignment strategy to assign resources.

= We demonstrate that the proposed deep deterministic policy gradient
algorithm has up to 27% average delay improvement as compared to baseline

algorithms.
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