Machine Learning Driven Latency Optimization for Application-aware Edge Computing-based IoTs

Liang Zhang, Bijan Jabbari

lzhang36@gmu.edu, bjabbari@gmu.edu

Communications and Networks Laboratory, Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030 USA

- Background of Edge Computing for IoT
- System Model and Problem Formulation
- Algorithm and Analysis
- Evaluation Results
- Conclusions

Internet of Things Applications

- Billions of Internet of Things (IoT) devices are connected to the Internet, and many IoT devices have limited power, computing and storage resources [1].
- Various IoT applications, have been widely studied to improve our daily life.
 Different applications may have various resource preference.

[1] C. Qiu et al., "Networking integrated cloud–edge–end in IoT: A blockchain–assisted collective Q-learning approach," *IEEE Internet Things J.*, vol. 8, no. 16, pp. 12 694–12 704, Aug. 2021.
 © 2022

MEC for IoT Applications

- MEC is a network architecture that pushes cloud computing capabilities at edge nodes that are close to users and connected to cloud servers via a core network.
- Mobile edge computing (*MEC*) is effective in reducing the latency for communications and computing services to IoT devices [2].

 [2] P. Wang et al., "Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems," *IEEE Internet Things J.*, vol. 6, no. 2, pp. 2872–2884, Apr. 2019.

- Background of Edge Computing for IoTs
- System Model and Problem Formulation
- Algorithm and Analysis
- Evaluation Results
- Conclusions

An Edge Computing Framework

Fig. 3: A novel framework for edge computing based IoTs.

Communication and Computing Model

 Let s_{i,j}, β_{i,j} and r_{i,j} be the signal to interference plus noise ratio (SINR), the assigned bandwidth, and the received data rate of user *i* towards the edge node *j*, respectively.

$$d_{i,j} = \max(d_{i,j}^{1}, d_{i,j}^{2})$$

$$\begin{cases}
d_{i,j}^{1} = f_{0}b_{i,j} \log_{2}(1 + s_{i,j}) \\
d_{i,j}^{2} = \min(d_{i,j'}^{a}, d_{j',j}^{b})
\end{cases}$$

Here, $d_{i,j}^1$ is the data rate of one hop communications; $d_{i,j}^2$ is the data rate of two-hop communications; $d_{i,j}^a$ and $d_{j',j}^b$ are the data rate of the access link and the backhaul link.

Let t^C_{i,j} and t^T_{i,j} be the computation latency and the transmission delay from TD i to edge node j. If TD i is served by edge node j, the total delay is:

$$t_{i,j} = t_{i,j}^C + t_{i,j}^T$$

Problem Formulation

 We formulate the APplication-aware Edge-IoT (APET) problem with the objective of minimizing the average latency of all TDs.

$$\mathscr{P}_0: \max_{\omega_{i,j}, b_{i,j}, \tau_{i,j}} \quad \frac{1}{|\mathscr{U}|} \sum_i \sum_j \omega_{i,j} t_{i,j}$$

s.t. :

$$C1: \sum_{j} \omega_{i,j} \leq 1, \quad \forall i \in \mathcal{U},$$

$$C2: \omega_{i,j} \leq q_{i,k} q_{j,k}^{E}, \quad \forall i \in \mathcal{U}, j \in \mathcal{E}, k \in \mathcal{K},$$

$$C3: \sum_{i} \omega_{i,j} b_{i,j} \leq f_{j}^{max}, \quad \forall j \in \mathcal{E},$$

$$C4: \sum_{i} \omega_{i,j} \tau_{i,j} \leq C_{j}, \quad \forall j \in \mathcal{E},$$

$$C5: \sum_{j} \omega_{i,j} \beta_{i,j} \leq 1, \quad \forall i \in \mathcal{U},$$

$$C6: \omega_{i,j} \in \{0,1\}, \quad \forall i \in \mathcal{U}, j \in \mathcal{E}.$$
(9)

- Background of Edge Computing for IoTs
- System Model and Problem Formulation
- Algorithm and Analysis
- Evaluation Results
- Conclusions

Deep Reinforcement Learning

 Machine learning is a branch of artificial intelligence and computer science, which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy*.

Elements of Deep Reinforcement Learning

- Agent: Intelligent programs
- Environment: External condition
- A typical fully connected neural network includes three layers: the input layer, the hidden layer and the output layer.
- The output (action a(t)) is determined by the input (state s(t)), the reward (r(t)) is determined by the output, and the weights are updated based on the reward.

The framework of DDPG

State:

$$s(n) = \{H(E), H(U), r_i, c_i, q_i, q_i^E, t_{i,j}\}$$

Action:

$$a(n) = \{\omega_{i,j}\}$$

Reward:

$$g(t) = \frac{1}{|U|} \sum_{i} \sum_{j} t_{i,j}$$

- Actor network: input is s, output is a
- Critic network: input is (s, a), output is Q(s,a)
- Target actor network and target critic network: input is actor network and critic network it is used to calculate the loss function of the critic network

The framework of DDPG

The critic network is updated based on the loss function:

$$\begin{cases} L(\theta^Q) = \frac{1}{K} \sum_{k=1}^{K} (g(k) - Q(s(k), a(k) | \theta^Q + \gamma A_1)^2, \\ A_1 = Q(s(k+1), a(k+1) | \theta^{Q^-})). \end{cases}$$
(6)

The actor network is updated based on the gradient policy as follows.

$$\begin{cases} \nabla_{\theta^{\varphi}} J(\theta^{\varphi}) = \frac{1}{K} \sum_{k=1}^{K} (A_2 \cdot A_3), \\ A_2 = \nabla_a Q(s, a | \theta^Q) \big|_{s=s(k), a=\varphi(s(k))}, \\ A_3 = \nabla_{\theta^{\varphi}} \varphi(s | \theta^{\varphi}) \big|_{s=s(k)}. \end{cases}$$
(7)

Then, the target networks are updated as:

$$\begin{cases} \theta^{\varphi^{-}} \leftarrow \eta \theta^{\varphi} + (1 - \eta) \theta^{\varphi^{-}}, \\ \theta^{Q^{-}} \leftarrow \eta \theta^{Q} + (1 - \eta) \theta^{Q^{-}}. \end{cases}$$
(8)

The DDPG-APET Algorithm

Algorithm 1: DDPG-APET

(nput : \mathscr{B} , \mathscr{U} , $u_i(t)$, $\varphi(s(t) \theta^{\varphi})$, $Q(s(t), a(t) \theta^Q)$, $\varphi(s(t) \theta^{\varphi^-})$ and $Q(s(t), a(t) \theta^{Q^-})$; Dutput: $g(n+1)$; or epoch m do	17 return the largest $g(n + 1)$ in all epoches; 18 Calculate $\omega_{i,j}$ based on the final action $a(n + 1)$; 19 Obtain $t_{i,j}$ based on $a(n + 1)$ and Algorithm 2;
2	Initialize the actor network, the critic network, the target actor network and the target critic network with the weights θ^{φ} , θ^{Q} , θ^{φ} , and θ^{Q} , respectively;	et
3	Initialize the replay buffer $\eta = 0$;	
4	Initialize $s(n)$, $a(n)$ and $g(n)$;	
5	for training step n do	
6	Obtain $H(\mathscr{E})$, $H(\mathscr{U})$, r_i , c_i , q_i , q_j^E , and $t_{i,j}$;	
7	Generate $s(n+1)$;	Lindote Critic notwork
8	Record the sample $(s(n), a(n), g(n), s(n+1))$ in	Update Critic network
	replay buffer;	
9	$\eta = \eta + 1;$	Undate Actor natural
10	if $\eta \ge \eta^{batch}$ then	Update Actor network
11	Update weight of the critic network θ^Q by	
	Eq. (10);	Update Target Actor network
12	Update weight of the actor network θ^{φ} by	oputte larget Actor hettorik
	Eq. (11);	
13	Update weights of target networks by Eq. (12);	
14	Generate action $a(n + 1)$;	Update Target Critic network
15	Add noise to action $a(n + 1) = a(n + 1) + a'(n + 1)$;
16	Obtain $g(n + 1)$ based on $a(n + 1)$ and Algorithm 2	2;
		10

Joint Resource Assign Algorithm

 An optimal resource assignment strategy is designed for the computing and communication resource allocation based on the given TD assignment.

Algorithm 2: Joint Resource Assign Algorithm

```
Input : \mathscr{C}, \mathscr{U}, f_i^{max}, C_j, \omega_{i,j};
    Output: b_{i,j} and \tau_{i,j};
1 for edge node j in E do
          Obtain the TD set \Omega_i = \{\omega_{i,j} = 1\};
2
          Initialize \Delta b, \Delta \tau, \Delta t_{i,j} and t_{i,j};
3
         f_{j}^{R} = f_{j}^{max}, C_{j}^{R} = C_{j}, f_{j}^{U} = 0 \text{ and } C_{j}^{U} = 0,;
4
          while f_i^R \ge \Delta b and C_i^R \ge \Delta \tau do
5
                for TD i in \Omega_i do
 6
                       Obtain t_{i,i} if \Delta b and \Delta \tau are assigned to TD i;
 7
                      Calculate \Delta t_{i,j} = t_{i,j} - t'_{i,j};
 8
                Find i' = \operatorname{argmax} \Delta t_{i,j};
 9
                Update b_{i',i} = b_{i',i} + \Delta b;
10
                 Update \tau_{i', j} = \tau_{i', j} + \Delta \tau;
11
```

The Diagram of the DDPG-APET Algorithm

- Background of Edge Computing for IoTs
- System Model and Problem Formulation
- Algorithm and Analysis
- Evaluation Results
- Conclusions

Simulation Settings

- We use Python3.7 and Pycharm 2020.3.2 to run our simulations, and utilize Tensorflow 2.4 (optimizer is tf.keras.optimizers.Adam).
- The coverage area is set as 500 m × 500 m, and all edge nodes are placed in fixed locations as shown in figure below.
- The same parameters are utilized to initialize the actor networks and the critic networks.
- Three baseline algorithms are utilized to evaluate the performance of the proposed algorithm.
 - 1) Best-APET
 - 2) Fair-APET
 - 3)) S-Edge

Evaluation Results

Evaluation Results (Cont'd)

Evaluation Results (Cont'd)

- Background of Edge Computing for IoTs
- System Model and Problem Formulation
- Algorithm and Analysis
- Evaluation Results
- Conclusions

Conclusions

- We have proposed a novel edge-computing framework to serve IoT devices with different types of applications, and formulated the application-aware edge-IoT problem with the target to optimize the average latency of all IoT devices.
- we have proposed a deep deterministic policy gradient algorithm to solve the application-aware edge-IoT problem and designed an optimal joint resource assignment strategy to assign resources.
- We demonstrate that the proposed deep deterministic policy gradient algorithm has up to 27% average delay improvement as compared to baseline algorithms.