Machine Learning Driven Latency Optimization for
Application-aware Edge Computing-based loTs

Liang Zhang, Bijan Jabbari

|lzhang36@gmu.edu, bjabbari@gmu.edu
Communications and Networks Laboratory,

Department of Electrical and Computer Engineering,
George Mason University,
Fairfax, VA 22030 USA

mailto:lzhang36@gmu.edu
mailto:bjabbari@gmu.edu

Outline

Background of Edge Computing for loT

System Model and Problem Formulation
Algorithm and Analysis
Evaluation Results

Conclusions

©2022

Internet of Things Applications

Billions of Internet of Things (loT) devices are connected to the Internet, and
many loT devices have limited power, computing and storage resources [1].

Various loT applications, have been widely studied to improve our daily life.
Different applications may have various resource preference.

Medical

[1] C. Qiu et al., “Networking integrated cloud—edge—end in 10T: A blockchain-assisted collective Q-learning approach, ” IEEE Internet

Things J., vol. 8, no. 16, pp. 12 694-12 704, Aug. 2021.
©2022 2

MEC for loT Applications

= MECis a network architecture that pushes cloud computing capabilities at edge nodes that are close
to users and connected to cloud servers via a core network.

= Mobile edge computing (MEC) is effective in reducing the latency for communications and
computing services to loT devices [2].

TD 5 (C)

Xt > <N 25 ——" Edge Node 3
/ ‘ Edge Node 1 Comparng. (©)
/ ¥ N) ~ MEC Facilities (())
18 S e i
MUs . U MUs

MUs

=0

i =0

Source: ILA. Elgendy, et al. / Future Generation Computer Edge Node 2
Systems, 100 (2019) 531-541. (A&C)
[2] P. Wang et al., “Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 2, pp. 28722884, Apr. 2019.

©2022 3

Outline

= Background of Edge Computing for loTs

= System Model and Problem Formulation
= Algorithm and Analysis
= Evaluation Results

= Conclusions

©2022

An Edge Computing Framework

((e)) _= AL: Access Link
MECN 3
BL: Backhaul Link
Mobile Edge Computing &4 Computing Backhaul /" 7y,
zr /R TR L ¢ ! Self Interf
Node (MECN) Facilities » Interference: & el Interterence

Fig. 3: A novel framework for edge computing based loTs.

©2022 5

Communication and Computing Model

= Llets;j, B;; and 1;; be the signal to interference plus noise ratio (SINR), the assigned
bandwidth, and the received data rate of user i towards the edge node j, respectively.

dl-,j = max(d},j, dgj)

di; = fobijlog,(1+s;;)

2 . a b
di,j = mln(di,]’,, dj’,j

Here, dillj is the data rate of one hop communications; dgj is the data rate of two-hop

a. and d? . are the data rate of the access link and the backhaul link.

communications; dl-j, jr,j

= let tfj and tl-T,j be the computation latency and the transmission delay from TD i to edge
node j. If TD i is served by edge node j, the total delay is:

— ¢+C T
ti}j = ti,j + ti,j

©2022 6

Problem Formulation

= We formulate the APplication-aware Edge-loT (APET) problem with the
objective of minimizing the average latency of all TDs.

|
Py max — Z Z wi jti,j
wi,j,\bi,j,Ti,j |%| i

S.T. .

Cl: > w; <1, Vie,
:

C2:a)i,j£q;,kq:?:k, VieU,je& keH,
C3IZLUI} Ij_f”""‘”"", Vje&,

C4 . Zwi,j'ri,j <Cj, Vjeé&,
C5: > wi iy <1, Vie,

C6:w;;€{0,1}, Vie¥Uje8. %)

©2022

Outline

= Background of Edge Computing for loTs

= System Model and Problem Formulation
= Algorithm and Analysis
= Evaluation Results

= Conclusions

©2022

Deep Reinforcement Learning

= Machine learning is a branch of artificial intelligence and computer science,
which focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy*.

#,% KE JIE |
00:15:19 |
ALPHAGO |

01:45:30

©2022 [*] Source: https://www.ibm.com/cloud/learn/machine-learning 9

Elements of Deep Reinforcement Learning

Agent: Intelligent programs

Environment: External condition

A typical fully connected neural network includes three layers: the input layer,

the hidden layer and the output layer.

The output (action a(t)) is determined by the input (state s(t)), the reward
(r(t)) is determined by the output, and the weights are updated based on the

reward.

Agent

State .~ Reward 7

Environment

Policy

Action

©2022

12

The framework of DDPG

= State:
s(n) = {H(E),HWU), 71, ¢1, 95, 47 ti ;)
= Action:
a(n) = {w;;}
= Reward:

g(t) = |_l1]|22 ti
i J

= Actor network: input is s, output is a
= Critic network: input is (s, a), output is Q(s,a)
= Target actor network and target critic network:
input is actor network and critic network
it is used to calculate the loss function of the critic network

The framework of DDPG

= The critic network is updated based on the loss function:
L(69) = Z (8(k) = Q(s(k), a(k)|69 +yA1),

(6)
= Q(s(k + 1),a(k +1)]697)).

= The actor network is updated based on the gradient policy as follows.

Voo J(6%) = Z (A2 - A3),

< ; (7)
Ay = V40(s,al6)|s=s(k),a=<p(8(k)) ’

(A3 = Ve ¢(510%) 5o (x) -

= Then, the target networks are updated as:
0¥ «— nb?% + (1 —n)o%¥",
02~ — no? + (1 —n)e<e".

(8)

©2022 12

The DDPG-APET Algorithm

Algorithm 1: DDPG-APET

1
2

e -1 = R W

10
11

12

13

14
15
16

Inmput : 9B, %, u;(t), p(s(t)|6¥), Q(s(t ,a(r)|6Q),
@(s(1)|0¥7) and Q(s(1),a(1)|6%7);

Output: g(n+1);

for epoch m do

Initialize the actor network, the critic network, the target
actor network and the target critic network with the
weights 6%, 02, 9%, and 02, respectively;

Initialize the replay buffer n = 0;

Initialize s(n), a(n) and g(n);

for training step n do

Obtain H(&), H(%), r;, ci, qi, qj.f, and t; j;
Generate s(n+ 1);
Record the sample (s(n),a(n), g(n),s(n+1)) in
replay buffer;
n=n+l,;
if 7> nbamh then
Update weight of the critic network e, by
Eq. (10);
Update weight of the actor network #¥ by
Eq. (11);
Update weights of target networks by Eq. (12);
Generate action a(n +1);
Add noise to action a(n+1) =a(n+1) +a’(n+1);
Obtain g(n + 1) based on a(n + 1) and Algorithm 2;
©2022

17 return the largest g(n + 1) in all epoches;
18 Calculate w; ; based on the final action a(n + 1);
19 Obtain #; ;j based on a(n + 1) and Algorithm 2;

Update Critic network

Update Actor network

Update Target Actor network

Update Target Critic network

13

Joint Resource Assign Algorithm

= An optimal resource assignment strategy is designed for the computing and
communication resource allocation based on the given TD assignment.

Algorithm 2: Joint Resource Assign Algorithm
Input : &, %, fj’."ax, Cj, wij;
Output: b; ; and 7; j;

1 for edge node j in & do

2 Obtain the TD set Q; = {w; j = 1};

3 Initialize Ab, A1, At; ; and 1; j;

s | ff=frer el =y ff =0and CF =0,

5 whlle fR > Ab and CR > At do

6 for TD [in Q do

7 L Obtain r j if Ab and At are assigned to TD i;

8

Cdlculdte AI;,J- =ti,j— f:‘,j;

9 Find i’ = argmax At; ; ;

; .
10 Update b, j = by j + Ab ;
11 Update 77 j = 73 j + AT;

©2022 14

©2022

The Diagram of the DDPG-APET Algorithm

User Assighment > Reward
F
) State
Agent B Action | Environment [——>{ Next State
Y " A
State Action Replay Buffer
Y * State
AcTor‘ Ne'rwor'k Mini Batch Action Critic Network
4*"““' FA" "; / ® < UpdﬂTE “‘vtc “‘o:r ‘ .

'-"&‘ ?c'.'sv ‘l’f'
AN ,m\.m"ln

VAW AW

Soft update

Y

Tar'ge.T Actor Network
n’ _‘;’l.‘!‘i “ -

Wn“" "'qt.'.‘qi
A‘k 0N A0N '

Gradient Policy

-~

Q@ value

IR
A\ \' **«"

Y

Loss Function

Update

F

LA

Fof‘l‘ update

TargeT Cr'i'ric NeTwork

;40’1” 0 "“41"'._“

"’o i' "'a 4
ff' ’\
EIAN Jh;

\V?J‘A"{"

15

Outline

Background of Edge Computing for loTs

System Model and Problem Formulation
Algorithm and Analysis
Evaluation Results

Conclusions

©2022

16

Simulation Settings

We use Python3.7 and Pycharm 2020.3.2 to run our simulations, and utilize
Tensorflow 2.4 (optimizer is tf.keras.optimizers.Adam).

The coverage area is set as 500 m x 500 m, and all edge nodes are placed in
fixed locations as shown in figure below.

The same parameters are utilized to initialize the actor networks and the critic

networks. " . —
Three baseline algorithms are utilized ‘:EEEN _________
to evaluate the performance of the ™

proposed algorithm. SR SR 30, 200 S S SO S
1) Best-APET L.

2) Fair-APET e e N
3)) S-Edge BT TS N . R

©2022 17

Evaluation Results

t bee)
420- ; DDPG-APET
»
|
400 A .
&
5 380
3 :
5 3601 1 n
=3 ' ¢
5 340- o L
< s ITie :
3201 \ I TP
| +laﬂ l: n
300 - # < {1 =
T, MR g
0 200 400 600 800 1000
Training Time Slot
Fig.3: Convergence results versus

©2022

different batch size.

350 -
-+~ DDPG-APET Lt
f“-
%*325- -—+- Best-APET =
Z 200) " FairAPET el
= --&- S-Edge " - -t
S 275 o - o
Y AT U -e e
§ 250" g '_-—"",’. ‘FJ' ,"“-ﬂ‘-
3 ’,, /,." ﬂ“'+ -------- -
%225' B L == *
b poig ,,/ “”,f
2200- /,«' /’/
¥ -
17514
40 45 50 55 60 65
Number of TDs

Fig.4: Average QoE versus number

of users.

18

Evaluation Results (Cont’d)

501

Average Latency of Served TDs (ms)

B DDPG-APET
1 mmA Bes-APET 3501
04 B4 Fair-APET
B S-Edge

g

@ 250 ! 5
0- ° BB DDPG-APET A
g 200 21 DDPG-APET (s) A

3 B Best-APET
150 - °
gn [ZZ2 Best-APET(s) A
;; 100- [eo] Fair-APET I

Fair-APET(s)
(o]
0 50 B S-Edge A
45 55 65 N Esa] S-Edge(s) I
of TDs 55 65

. # of TDs
Fig. 5: Average latency of served

TDs versus # of TDs. Fig. 6: Comparison of the average delay.

©2022 19

CDF

1.0 1

0.8

0.6

0.4

0.2 -

0.0

Evaluation Results (Cont’d)

Bl DDPG-APET
B Best-APET
[Fair-APET
B S-Edge

400
[1 DDPG-APET | J‘ [
1 Best-APET —H ?350—
"1 Fair-APET]—J J_ £ 300-
[] S-Edge A
4 = 250-
(@]
2200
2
3 3 150+
)
£ 100-
-
T
< 50 -
[. : : . :
100 200 300 400 500 0-
Latency

Fig. 7: Cumulative distribution
function results.

©2022

12

15 18
of Total Applications

Fig. 8: Average latency of TDs versus #
of applications.

20

Outline

Background of Edge Computing for loTs

System Model and Problem Formulation
Algorithm and Analysis
Evaluation Results

Conclusions

©2022

21

Conclusions

= We have proposed a novel edge-computing framework to serve loT devices
with different types of applications, and formulated the application-aware
edge-loT problem with the target to optimize the average latency of all loT
devices.

= we have proposed a deep deterministic policy gradient algorithm to solve the
application-aware edge-loT problem and designed an optimal joint resource

assignment strategy to assign resources.

= We demonstrate that the proposed deep deterministic policy gradient
algorithm has up to 27% average delay improvement as compared to baseline

algorithms.

©2022 22

	Slide 0: Machine Learning Driven Latency Optimization for Application-aware Edge Computing-based IoTs
	Slide 1: Outline
	Slide 2: Internet of Things Applications
	Slide 3: MEC for IoT Applications
	Slide 4: Outline
	Slide 5: An Edge Computing Framework
	Slide 6: Communication and Computing Model
	Slide 7: Problem Formulation
	Slide 8: Outline
	Slide 9: Deep Reinforcement Learning
	Slide 10: Elements of Deep Reinforcement Learning
	Slide 11: The framework of DDPG
	Slide 12: The framework of DDPG
	Slide 13: The DDPG-APET Algorithm
	Slide 14: Joint Resource Assign Algorithm
	Slide 15: The Diagram of the DDPG-APET Algorithm
	Slide 16: Outline
	Slide 17: Simulation Settings
	Slide 18: Evaluation Results
	Slide 19: Evaluation Results (Cont’d)
	Slide 20: Evaluation Results (Cont’d)
	Slide 21: Outline
	Slide 22: Conclusions

