Anycast Planning in Space Division Multiplexing Elastic Optical Networks with Multi-core Fibers

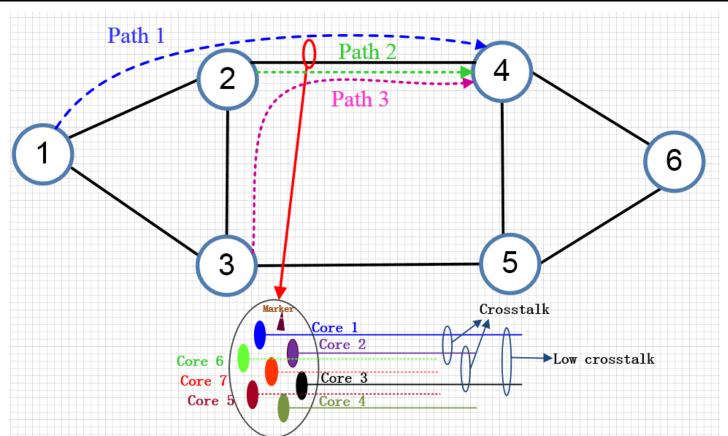
Presenter: Liang Zhang

Authors: Liang Zhang, Abdallah Khreishah and Nirwan Ansari

New Jersey Institute of Technology, New Jersey, USA Email: {lz284 , abdallah.khreishah, nirwan.Ansari}@njit.edu

New Jersey Institute of Technology

Advanced Networking Laboratory


> Background

- Problem Formulation
- > Heuristic Algorithm
- > Evaluation Results
- > Conclusions

SDM Elasctic Optical Neworks with MCFs

- Transmitting lightpath through the adjacent cores bring crosstalk to each other;
- The crosstalk between nonadjacent cores is too low to measure;
- The center core which has more adjacent cores exhibits higher crosstalk, and then the lightpath transmission distance in this core is shorter.

SDM Elasctic Optical Neworks with MCFs (cont'd)

Eq. (1) shows how to calculate the mean crosstalk of one core within a seven-core MCF [11]. Here, m is the number of adjacent cores, L is the lightpath transmitting distance in terms of kilometers, and h is the increase of the mean crosstalk per kilometer (h > 0). Eq. (2) shows the definition of h, and it is determined by several fiber parameters: κ , β , ρ , D which is the coupling coefficient, propagation constant, bend radius and core-pitch respectively [7, 11, 16]. The parameters for a seven-core MCF are set as Table I.

$$XT(m,L) = \frac{m - m \cdot exp(-hL(m+1))}{1 + m \cdot exp(-hL(m+1))}$$
$$h = (2 \cdot \kappa^2 \cdot \rho)/(\beta \cdot D)$$

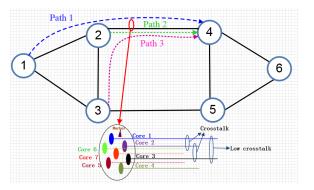


TABLE I PARAMETERS FOR A SEVEN-CORE MCF

	κ , coupling coefficient	$3.4 * 10^{-4}$			
(1)	β , propagation constant	$4 * 10^{6} 1/m$			
	ρ , bend radius	50 mm			
	D, core-pitch	$4.5 * 10^{-5} \text{ m}$			
	Θ , inter-core crosstalk threshold	-30 dB			

[7] A. Muhammad, G. Zervas, D. Simeonidou, and R. Forchheimer, "Routing, spectrum and core allocation in flexgrid SDM networks with multicore fibers," in *International Conference on Optical Network Design and Modeling*, pp. 192–197, May 2014.

(2)

- [11] G. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, "Survey and evaluation of space division multiplexing: From technologies to optical networks," *IEEE Communications Surveys Tutorials*, vol. 17, no. 4, pp. 2136–2156, Nov. 2015.
- [16] T. Hayashi *et al.*, "Design and fabrication of ultra-low crosstalk and lowloss multi-core fiber," *Opt. Express*, vol. 19, no. 17, pp. 16 576–16 592, Aug. 2011.

New Jersey Institute of Technology

Advanced Networking Laboratory

> Background

- > Problem Formulation
- > Heuristic Algorithm
- > Evaluation Results
- > Conclusions

Notation

Topology	• $\mathcal{G}(\mathcal{V}, \mathcal{E})$: \mathcal{V} and \mathcal{E} are node and link sets in graph \mathcal{G} , respectively.
Requests	 <i>R</i>: requests set. <i>r</i>(<i>o_i</i>, <i>t_i</i>, <i>b_i</i>): the source node of the <i>i</i>th request is <i>o_i</i>, the target node set is <i>t_i</i>, and the bandwidth requirement <i>b_i</i> in terms of FSs, <i>i</i> ∈ <i>R</i>.
Core info.	 N: core fiber set, each link is equipped the same cores. B: total bandwidth requirement of anycast requests, B = R
Network bandwidth resource and path info.	 ∑ b_i. FG: required FSs of a guard band for a request. P: routing path set as P = {p^(k)_{s,d}, ∀s ≠ d ∈ V}; k is used to index paths according to the ascending distance. F_{max}: an upper bound of the network capacity in terms of FSs with respect to R, F_{max} = B + FG ⋅ R .
Core and crosstalk parameters	 m_v: the number of total adjacent cores of core v. Θ: inter-core crosstalk threshold. Ω_v: the maximum transmission distance of a lightpath in core v.
Relationship of links	 y_{i,j}: relationship of lightpaths; it equals to 1 when the two lighpaths i and j are not link-disjoint; otherwise, it is 0 (∀i, j ∈ P).
ced Networking Labor	atory 6 New Jersey Institute of Technology

Advanced Networking Laboratory

Variables

- $x_{i,p}$: a binary variable that equals to 1 if the *i*th request is provisioned by the *p*th path; otherwise, it is 0.
- f_i : an integer variable that defines the starting FS for the *i*th request, and the consecutively required bandwidth resources are also reserved for request *i*. Then, the spectrum contiguity constraint is automatically satisfied.
- ζ^v_{i,p}: a binary variable that equals to 1 if the vth core is used by the pth path of the ith request; otherwise, it is 0 (v ∈ N).
- $L_{i,p}^{v}$: an integer variable that equals to the length of the *p*th path of the *i*th request when the *v*th core is used.
- $z_{i,j}$: a binary variable that equals to 1 if the core selected for the *i*th request is the same as it for the *j*th request; otherwise it is 0.
- δ_{i,j} (∀i ≠ j): it is a boolean variable which is defined in Eq. (4). It equals to 1 if the starting FS index f_j is bigger than that of f_i; otherwise, it is 0. Since this constraint is not linear, it is transformed to linear constraints as shown in Eqs. (10)-(12).

$$\delta_{i,j} = \begin{cases} 1, & f_i < f_j, & \forall i, j \in \mathcal{R} \\ 0, & f_i \ge f_j. \end{cases}$$

Problem Formulation

$\min_{x_{i,p},\zeta_{i,p}^v,f_i} \qquad F$	(5)	
s.t.: Objective: minimize the maximum index of FSs in	n all core	s among all links of the network
$\sum_{p} x_{i,p} = 1, \forall i \in \mathcal{R}, p \in \mathcal{P}$	(6)	one path serving constraint
$ \frac{\overline{p}}{f_i + b_i - 1 + FG \le F, \forall i \in \mathcal{R} $	(7)	FS contiguity constraint
$x_{i,p} = \sum_{v} \zeta_{i,p}^{v}, \forall i \in \mathcal{R}, p \in \mathcal{P}$	(8)	core assignment constraint
$XL(m_v, L_{i,p}^v) \le \Theta, \forall i \in \mathcal{R}, p \in \mathcal{P}$	(9)	Crosstalk constraints
$f_j - f_i < \delta_{i,j} \cdot F_{max}, \forall i \neq j \in \mathcal{R}$	(10)	
$f_i - f_j < \delta_{j,i} \cdot F_{max}, \forall i \neq j \in \mathcal{R}$	(11)	
$\delta_{i,j} + \delta_{j,i} = 1, \forall i \neq j \in \mathcal{R}$	(12)	
$f_i + b_i - f_j \leq [5 - \delta_{i,j} - x_{i,p} - x_{j,p'} - y_{i,j} \\ - z_{i,j}] \cdot F_{max} \forall i, j \in \mathcal{R}, p \in \mathcal{P}$	(13)	non-overlapping constraints
$f_j + b_j - f_i \leq [5 - \delta_{j,i} - x_{i,p} - x_{j,p'} - y_{i,j} - z_{i,j}] \cdot F_{max}, \forall i, j \in \mathcal{R}, p \in \mathcal{P}$	(14)	

Advanced Networking Laboratory

N

New Jersey Institute of Technology

ΙT

Problem Formulation

$$XT(m,L) = \frac{m - m \cdot exp(-hL(m+1))}{1 + m \cdot exp(-hL(m+1))}$$
(1)

$$h = (2 \cdot \kappa^2 \cdot \rho) / (\beta \cdot D) \tag{2}$$

Eq. (3) is employed to find the relationship between XT and L. For a given core, m is fixed and m > 0. Thus, XT is a nondecreasing function for a given core.

$$\frac{\partial XT}{\partial L} = m \cdot (m+1)^2 \cdot h \cdot exp(-hL(m+1)) > 0 \quad (3)$$

Note that Eq. (9) is not a linear constraint. Since XT is a nondecreasing function of the transmitting distance under a given core (Eq. (3)), Eq. (9) can be transformed to Eq. (15) which is a linear constraint.

$$L_{i,p}^v < \Omega_v \tag{15}$$

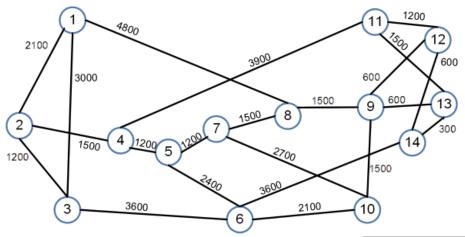
- > Background
- Problem Formulation
- > Heuristic Algorithm
- > Evaluation Results
- > Conclusions

Heuristic Algorithm

Al	Algorithm 1: ARSCA-kSPP Algorithm			
Ι	Input : $\mathcal{G}(\mathcal{V}, \mathcal{E}), \mathcal{N}, \mathcal{R}$ and Θ ;			
(Output: $x_{i,p}$, $\zeta_{i,p}^v$ and f_i ;			
1 V	while $\mathcal{R} \neq \varnothing$ do			
2	set the core pattern with index according to the			
	predefined reducing crosstalk algorithm in [9];			
3	for request $r \in \mathcal{R}$ do			
4	build k shortest routing path set \mathcal{P}_r from o_i to t_i			
	for request r;			
5	for path $p \in \mathcal{P}_r$ do			
6	check Eq. (9) for the path p ;			
7	update the path set \mathcal{P}_r ;			
8	for core $v \in \mathcal{N}$ do			
9	calculate utilized FSs of core v along the			
	path p ;			
10	get core v in the path p which has the lowest			
	available FS index;			
11	assign consecutive $b_i + FG$ FSs to the request r			
	within the core v along path p ;			

The complexity of the ILP strategy and *ARSCA-kSPP algo*rithm is $o(k^2B^2|\mathcal{R}|^2|\mathcal{E}|^4|\mathcal{N}|^2)$ and $o(kB|\mathcal{R}||\mathcal{E}|^2|\mathcal{N}|)$, respectively. *ARSCA-kSPP algorithm* greatly reduces the complexity.

Advanced Networking Laboratory


New Jersey Institute of Technology

- > Background
- Problem Formulation
- > Heuristic Algorithm
- > Evaluation Results
- > Conclusions

Simulation Settings

A SDM EON with MCFs in the NSF topology.

Network topology	NSF network
The bandwidth of a FS	12.5 Gb/s
o_i and t_i ($o_i \notin t_i$), randomly choose	[1, 14]
$ t_i $, number of candidate destination nodes	2
b_i , the bandwidth requirement for \mathcal{R}	[1, 6]
F_G , guard-band FS per lightpath	1
$ \mathcal{N} $, number of cores for each link	7
k, number of candidate paths for each request	3
$ \mathcal{R} $, number of requests	$\{5, 10, 20\}$
Modulation level	BPSK, 1 bit/symbol

Table 1: Simulation Parameters

Previous Evaluation Results

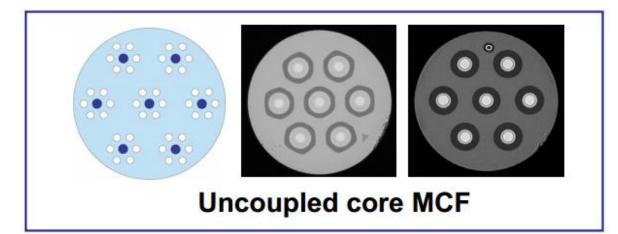
	$ \mathcal{R} = 5$		$ \mathcal{R} = 10$		$ \mathcal{R} = 20$	
	$B_t = 325$		$B_t = 637.5$		$B_t = 1212.5$	
Algorithms	F	Time †	F	Time	F	Time
ILP (CVX)	8	151.42	8	2180.6	8	36928
ARSCA-SPP	8	0.04	8	0.05	11	0.06

Table 2: Results for the ARSCA problem in the six-node topology

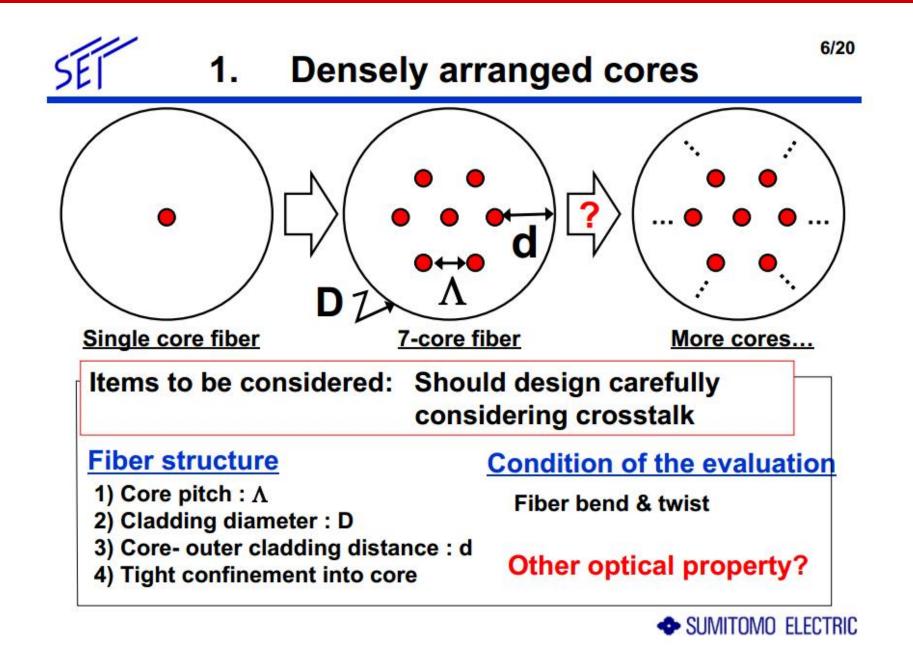
[†] The basic unit of time is one second.

- Background
- Problem Formulation
- > Heuristic Algorithm
- > Evaluation Results
- > Conclusions

Conclusions


- This work studies the anycast planning problem in SDM EONs overlaid on MCFs. The ARSCA problem is formulated while considering the core crosstalk using ILP model.
- To our best knowledge, this is the first paper to investigate the anycast problem in the space division multiplexing elastic optical networks overlaid on multicore fibers.
- CVX and Gurobi are used to achieve the optimal result, and a heuristic algorithm named ARSCA-SPP is proposed to efficiently solve the ARSCA problem.

Multi-Core Fibers and Their Technical Feasibility


Takashi SASAKI Sumitomo Electric Industries, LTD.

Advanced Networking Laboratory

New Jersey Institute of Technology

Advanced Networking Laboratory

New Jersey Institute of Technology