ENCE 452: Artificial Intelligence

Instructor:

Liang Zhang, Assistant Professor

Prerequisites

ECE 220 and STAT 346, or permission of instructor.

Objectives

This course provides basic theory and important applications. Topics include probability concepts and axioms; stationarity and ergodicity; random variables and their functions; vectors; expectation and variance; conditional expectation; moment-generating and characteristic functions; random processes such as white noise and Gaussian; autocorrelation and power spectral density; linear filtering of random processes, and basic ideas of estimation and detection.

Location

EASC 1066

Time

Mon/Wed/Fri 2:00-2:50 pm

ENCE 452 Syllabus

ENCE 452 Lecture Notes

Lectures Download Links
Lecture 0 Lecture 0 (pdf)
Lecture 1 Lecture 1 (pdf)
Lecture 2 Lecture 2 (pdf)
Lecture 3 Lecture 3 (pdf)
Lecture 4 Lecture 4 (pdf)
Lecture 5 Lecture 5 (pdf)
Lecture 6 Lecture 6 (pdf)
Lecture 7 Lecture 7 (pdf)
Lecture 8 Lecture 8 (pdf) Video part 1 (mp4) Video part 2 (mp4)
Lecture 9 Lecture 9 (pdf)
Annex (Generating RVs) Annex (pdf)
Lecture 10 Lecture 10 (pdf)
Lecture 11 Lecture 11 (pdf)
Lecture 12 Lecture 12 (pdf)
Lecture 13 Lecture 13 (pdf)
Lecture 14 Lecture 14 (pdf)
Lecture 15 Lecture 15 (pdf)
Lecture 16 Lecture 16 (pdf)
Formula Sheetpmf and pdf for exam

ENCE 452 Projects

  1. Project 1

    Project     Solutions

  2. Project 2

    Project     Solutions

  3. Project 3

    Project     Solutions

ENCE 452 Homework